Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Epilepsia ; 64(3): 553-566, 2023 03.
Article in English | MEDLINE | ID: covidwho-2192571

ABSTRACT

There are only a few drugs that can seriously lay claim to the title of "wonder drug," and ivermectin, the world's first endectocide and forerunner of a completely new class of antiparasitic agents, is among them. Ivermectin, a mixture of two macrolytic lactone derivatives (avermectin B1a and B1b in a ratio of 80:20), exerts its highly potent antiparasitic effect by activating the glutamate-gated chloride channel, which is absent in vertebrate species. However, in mammals, ivermectin activates several other Cys-loop receptors, including the inhibitory γ-aminobutyric acid type A and glycine receptors and the excitatory nicotinic acetylcholine receptor of brain neurons. Based on these effects on vertebrate receptors, ivermectin has recently been proposed to constitute a multifaceted wonder drug for various novel neurological indications, including alcohol use disorders, motor neuron diseases, and epilepsy. This review critically discusses the preclinical and clinical evidence of antiseizure effects of ivermectin and provides several arguments supporting that ivermectin is not a suitable candidate drug for the treatment of epilepsy. First, ivermectin penetrates the mammalian brain poorly, so it does not exert any pharmacological effects via mammalian ligand-gated ion channels in the brain unless it is used at high, potentially toxic doses or the blood-brain barrier is functionally impaired. Second, ivermectin is not selective but activates numerous inhibitory and excitatory receptors. Third, the preclinical evidence for antiseizure effects of ivermectin is equivocal, and at least in part, median effective doses in seizure models are in the range of the median lethal dose. Fourth, the only robust clinical evidence of antiseizure effects stems from the treatment of patients with onchocerciasis, in which the reduction of seizures is due to a reduction in microfilaria densities but not a direct antiseizure effect of ivermectin. We hope that this critical analysis of available data will avert the unjustified hype associated with the recent use of ivermectin to control COVID-19 from recurring in neurological diseases such as epilepsy.


Subject(s)
Alcoholism , COVID-19 , Epilepsy , Animals , Humans , Ivermectin/pharmacology , Antiparasitic Agents/pharmacology , Mammals
2.
Molecules ; 27(13)2022 Jun 29.
Article in English | MEDLINE | ID: covidwho-1934175

ABSTRACT

Infectious diseases have always been the number one enemy threatening health and well-being. With increasing numbers of infectious diseases, growing resistance of pathogens, and declining roles of antibiotics in the treatment of infectious diseases, it is becoming increasingly difficult to treat new infectious diseases, and there is an urgent need to develop new antibiotics to change the situation. Natural products tend to exhibit many special biological properties. The genus Peganum (Zygophyllaceae) has been used, for a long time, to treat cough, asthma, lumbago, hypertension, diabetes, and Alzheimer's disease. Over the past two decades, a growing number of studies have shown that components from Peganum harmala Linn and its derivatives can inhibit a variety of microorganisms by inducing the accumulation of ROS in microorganisms, damaging cell membranes, thickening cell walls, disturbing cytoplasm, and interfering with DNA synthesis. In this paper, we provide a review on the antibacterial, antifungal, antiviral, and antiparasitic activities of P. harmala, with a view to contribute to research on utilizing P. harmala for medicinal applicaitons and to provide a reference in the field of antimicrobial and a basis for the development of natural antimicrobial agents for the treatment of infectious diseases.


Subject(s)
Peganum , Anti-Bacterial Agents/pharmacology , Antifungal Agents , Antiparasitic Agents/pharmacology , Antiviral Agents/pharmacology , Plant Extracts/pharmacology , Seeds
3.
Pharmacol Res Perspect ; 9(3): e00800, 2021 05.
Article in English | MEDLINE | ID: covidwho-1898944

ABSTRACT

Antiprotozoal drug nitazoxanide (NTZ) has shown diverse pharmacological properties and has appeared in several clinical trials. Herein we present the synthesis, characterization, in vitro biological investigation, and in silico study of four hetero aryl amide analogs of NTZ. Among the synthesized molecules, compound 2 and compound 4 exhibited promising antibacterial activity against Escherichia coli (E. coli), superior to that displayed by the parent drug nitazoxanide as revealed from the in vitro antibacterial assay. Compound 2 displayed zone of inhibition of 20 mm, twice as large as the parent drug NTZ (10 mm) in their least concentration (12.5 µg/ml). Compound 1 also showed antibacterial effect similar to that of nitazoxanide. The analogs were also tested for in vitro cytotoxic activity by employing cell counting kit-8 (CCK-8) assay technique in HeLa cell line, and compound 2 was identified as a potential anticancer agent having IC50 value of 172 µg which proves it to be more potent than nitazoxanide (IC50  = 428 µg). Furthermore, the compounds were subjected to molecular docking study against various bacterial and cancer signaling proteins. The in vitro test results corroborated with the in silico docking study as compound 2 and compound 4 had comparatively stronger binding affinity against the proteins and showed a higher docking score than nitazoxanide toward human mitogen-activated protein kinase (MAPK9) and fatty acid biosynthesis enzyme (FabH) of E. coli. Moreover, the docking study demonstrated dihydrofolate reductase (DHFR) and thymidylate synthase (TS) as probable new targets for nitazoxanide and its synthetic analogs. Overall, the study suggests that nitazoxanide and its analogs can be a potential lead compound in the drug development.


Subject(s)
Amides , Anti-Bacterial Agents , Antineoplastic Agents , Antiparasitic Agents , Nitro Compounds , Thiazoles , Amides/chemistry , Amides/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antiparasitic Agents/chemistry , Antiparasitic Agents/pharmacology , Bacterial Proteins/metabolism , Biological Assay , Cell Survival/drug effects , Escherichia coli/drug effects , Escherichia coli/growth & development , HeLa Cells , Humans , Mitogen-Activated Protein Kinase 9/metabolism , Molecular Docking Simulation , Nitro Compounds/chemistry , Nitro Compounds/pharmacology , Tetrahydrofolate Dehydrogenase/metabolism , Thiazoles/chemistry , Thiazoles/pharmacology , Thymidylate Synthase/metabolism
4.
Int J Antimicrob Agents ; 59(2): 106516, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1611755

ABSTRACT

High concentrations of ivermectin demonstrated antiviral activity against SARS-CoV-2 in vitro. The aim of this study was to assess the safety and efficacy of high-dose ivermectin in reducing viral load in individuals with early SARS-CoV-2 infection. This was a randomised, double-blind, multicentre, phase II, dose-finding, proof-of-concept clinical trial. Participants were adults recently diagnosed with asymptomatic/oligosymptomatic SARS-CoV-2 infection. Exclusion criteria were: pregnant or lactating women; CNS disease; dialysis; severe medical condition with prognosis <6 months; warfarin treatment; and antiviral/chloroquine phosphate/hydroxychloroquine treatment. Participants were assigned (ratio 1:1:1) according to a randomised permuted block procedure to one of the following arms: placebo (arm A); single-dose ivermectin 600 µg/kg plus placebo for 5 days (arm B); and single-dose ivermectin 1200 µg/kg for 5 days (arm C). Primary outcomes were serious adverse drug reactions (SADRs) and change in viral load at Day 7. From 31 July 2020 to 26 May 2021, 32 participants were randomised to arm A, 29 to arm B and 32 to arm C. Recruitment was stopped on 10 June because of a dramatic drop in cases. The safety analysis included 89 participants and the change in viral load was calculated in 87 participants. No SADRs were registered. Mean (S.D.) log10 viral load reduction was 2.9 (1.6) in arm C, 2.5 (2.2) in arm B and 2.0 (2.1) in arm A, with no significant differences (P = 0.099 and 0.122 for C vs. A and B vs. A, respectively). High-dose ivermectin was safe but did not show efficacy to reduce viral load.


Subject(s)
Antiviral Agents/pharmacokinetics , COVID-19 Drug Treatment , Ivermectin/pharmacokinetics , SARS-CoV-2/drug effects , Adult , Antiparasitic Agents/blood , Antiparasitic Agents/pharmacokinetics , Antiparasitic Agents/pharmacology , Antiviral Agents/blood , Antiviral Agents/pharmacology , COVID-19/blood , COVID-19/virology , Double-Blind Method , Drug Repositioning , Female , Humans , Ivermectin/blood , Ivermectin/pharmacology , Male , Middle Aged , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity , Treatment Outcome , Viral Load/drug effects
5.
Biochim Biophys Acta Mol Basis Dis ; 1868(2): 166294, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1525694

ABSTRACT

Ivermectin (IVM) is an FDA approved macrocyclic lactone compound traditionally used to treat parasitic infestations and has shown to have antiviral potential from previous in-vitro studies. Currently, IVM is commercially available as a veterinary drug but have also been applied in humans to treat onchocerciasis (river blindness - a parasitic worm infection) and strongyloidiasis (a roundworm/nematode infection). In light of the recent pandemic, the repurposing of IVM to combat SARS-CoV-2 has acquired significant attention. Recently, IVM has been proven effective in numerous in-silico and molecular biology experiments against the infection in mammalian cells and human cohort studies. One promising study had reported a marked reduction of 93% of released virion and 99.98% unreleased virion levels upon administration of IVM to Vero-hSLAM cells. IVM's mode of action centres around the inhibition of the cytoplasmic-nuclear shuttling of viral proteins by disrupting the Importin heterodimer complex (IMPα/ß1) and downregulating STAT3, thereby effectively reducing the cytokine storm. Furthermore, the ability of IVM to block the active sites of viral 3CLpro and S protein, disrupts important machinery such as viral replication and attachment. This review compiles all the molecular evidence to date, in review of the antiviral characteristics exhibited by IVM. Thereafter, we discuss IVM's mechanism and highlight the clinical advantages that could potentially contribute towards disabling the viral replication of SARS-CoV-2. In summary, the collective review of recent efforts suggests that IVM has a prophylactic effect and would be a strong candidate for clinical trials to treat SARS-CoV-2.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Drug Repositioning , Ivermectin/therapeutic use , SARS-CoV-2/drug effects , Virus Replication/drug effects , Animals , Antiparasitic Agents/pharmacology , Antiparasitic Agents/therapeutic use , Antiviral Agents/pharmacology , COVID-19/metabolism , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/metabolism , Humans , Ivermectin/pharmacology , Karyopherins/metabolism , SARS-CoV-2/physiology
6.
Int J Biochem Cell Biol ; 142: 106114, 2022 01.
Article in English | MEDLINE | ID: covidwho-1499649

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) emerged from Wuhan in China before it spread to the entire globe. It causes coronavirus disease of 2019 (COVID-19) where mostly individuals present mild symptoms, some remain asymptomatic and some show severe lung inflammation and pneumonia in the host through the induction of a marked inflammatory 'cytokine storm'. New and efficacious vaccines have been developed and put into clinical practice in record time, however, there is a still a need for effective treatments for those who are not vaccinated or remain susceptible to emerging SARS-CoV-2 variant strains. Despite this, effective therapeutic interventions against COVID-19 remain elusive. Here, we have reviewed potential drugs for COVID-19 classified on the basis of their mode of action. The mechanisms of action of each are discussed in detail to highlight the therapeutic targets that may help in reducing the global pandemic. The review was done up to July 2021 and the data was assessed through the official websites of WHO and CDC for collecting the information on the clinical trials. Moreover, the recent research papers were also assessed for the relevant data. The search was mainly based on keywords like Coronavirus, SARS-CoV-2, drugs (specific name of the drugs), COVID-19, clinical efficiency, safety profile, side-effects etc.This review outlines potential areas for future research into COVID-19 treatment strategies.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Drug Repositioning , SARS-CoV-2/drug effects , Adaptive Immunity/immunology , Antibodies, Viral/immunology , Antimalarials/pharmacology , Antiparasitic Agents/pharmacology , CD4-Positive T-Lymphocytes/immunology , COVID-19/therapy , Humans , Immunity, Innate/immunology , Immunization, Passive/methods , Probiotics/pharmacology , SARS-CoV-2/immunology , COVID-19 Serotherapy
7.
Pharmacol Res Perspect ; 9(1): e00712, 2021 02.
Article in English | MEDLINE | ID: covidwho-1482163

ABSTRACT

Mass drug administration of ivermectin has been proposed as a possible malaria elimination tool. Ivermectin exhibits a mosquito-lethal effect well beyond its biological half-life, suggesting the presence of active slowly eliminated metabolites. Human liver microsomes, primary human hepatocytes, and whole blood from healthy volunteers given oral ivermectin were used to identify ivermectin metabolites by ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry. The molecular structures of metabolites were determined by mass spectrometry and verified by nuclear magnetic resonance. Pure cytochrome P450 enzyme isoforms were used to elucidate the metabolic pathways. Thirteen different metabolites (M1-M13) were identified after incubation of ivermectin with human liver microsomes. Three (M1, M3, and M6) were the major metabolites found in microsomes, hepatocytes, and blood from volunteers after oral ivermectin administration. The chemical structure, defined by LC-MS/MS and NMR, indicated that M1 is 3″-O-demethyl ivermectin, M3 is 4-hydroxymethyl ivermectin, and M6 is 3″-O-demethyl, 4-hydroxymethyl ivermectin. Metabolic pathway evaluations with characterized cytochrome P450 enzymes showed that M1, M3, and M6 were produced primarily by CYP3A4, and that M1 was also produced to a small extent by CYP3A5. Demethylated (M1) and hydroxylated (M3) ivermectin were the main human in vivo metabolites. Further studies are needed to characterize the pharmacokinetic properties and mosquito-lethal activity of these metabolites.


Subject(s)
Antiparasitic Agents/pharmacokinetics , Ivermectin/pharmacokinetics , Administration, Oral , Antiparasitic Agents/blood , Antiparasitic Agents/pharmacology , Cells, Cultured , Cytochrome P-450 Enzyme System/metabolism , Demethylation , Hepatocytes/metabolism , Humans , Hydroxylation , Ivermectin/blood , Ivermectin/pharmacology , Metabolic Networks and Pathways , Microsomes, Liver/metabolism
8.
Molecules ; 26(6)2021 Mar 23.
Article in English | MEDLINE | ID: covidwho-1389468

ABSTRACT

Natural products are gaining more interest recently, much of which focuses on those derived from medicinal plants. The common chicory (Cichorium intybus L.), of the Astraceae family, is a prime example of this trend. It has been proven to be a feasible source of biologically relevant elements (K, Fe, Ca), vitamins (A, B1, B2, C) as well as bioactive compounds (inulin, sesquiterpene lactones, coumarin derivatives, cichoric acid, phenolic acids), which exert potent pro-health effects on the human organism. It displays choleretic and digestion-promoting, as well as appetite-increasing, anti-inflammatory and antibacterial action, all owing to its varied phytochemical composition. Hence, chicory is used most often to treat gastrointestinal disorders. Chicory was among the plants with potential against SARS-CoV-2, too. To this and other ends, roots, herb, flowers and leaves are used. Apart from its phytochemical applications, chicory is also used in gastronomy as a coffee substitute, food or drink additive. The aim of this paper is to present, in the light of the recent literature, the chemical composition and properties of chicory.


Subject(s)
Chicory/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antiparasitic Agents/chemistry , Antiparasitic Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Chicory/physiology , Cooking , Food Hypersensitivity/etiology , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Plants, Medicinal/chemistry , COVID-19 Drug Treatment
9.
Am J Ther ; 28(3): e299-e318, 2021 04 22.
Article in English | MEDLINE | ID: covidwho-1349826

ABSTRACT

BACKGROUND: After COVID-19 emerged on U.S shores, providers began reviewing the emerging basic science, translational, and clinical data to identify potentially effective treatment options. In addition, a multitude of both novel and repurposed therapeutic agents were used empirically and studied within clinical trials. AREAS OF UNCERTAINTY: The majority of trialed agents have failed to provide reproducible, definitive proof of efficacy in reducing the mortality of COVID-19 with the exception of corticosteroids in moderate to severe disease. Recently, evidence has emerged that the oral antiparasitic agent ivermectin exhibits numerous antiviral and anti-inflammatory mechanisms with trial results reporting significant outcome benefits. Given some have not passed peer review, several expert groups including Unitaid/World Health Organization have undertaken a systematic global effort to contact all active trial investigators to rapidly gather the data needed to grade and perform meta-analyses. DATA SOURCES: Data were sourced from published peer-reviewed studies, manuscripts posted to preprint servers, expert meta-analyses, and numerous epidemiological analyses of regions with ivermectin distribution campaigns. THERAPEUTIC ADVANCES: A large majority of randomized and observational controlled trials of ivermectin are reporting repeated, large magnitude improvements in clinical outcomes. Numerous prophylaxis trials demonstrate that regular ivermectin use leads to large reductions in transmission. Multiple, large "natural experiments" occurred in regions that initiated "ivermectin distribution" campaigns followed by tight, reproducible, temporally associated decreases in case counts and case fatality rates compared with nearby regions without such campaigns. CONCLUSIONS: Meta-analyses based on 18 randomized controlled treatment trials of ivermectin in COVID-19 have found large, statistically significant reductions in mortality, time to clinical recovery, and time to viral clearance. Furthermore, results from numerous controlled prophylaxis trials report significantly reduced risks of contracting COVID-19 with the regular use of ivermectin. Finally, the many examples of ivermectin distribution campaigns leading to rapid population-wide decreases in morbidity and mortality indicate that an oral agent effective in all phases of COVID-19 has been identified.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Ivermectin/pharmacology , SARS-CoV-2/drug effects , Antiparasitic Agents/pharmacology , COVID-19/prevention & control , COVID-19/transmission , Disease Transmission, Infectious/prevention & control , Humans , Treatment Outcome
10.
Life Sci ; 280: 119752, 2021 Sep 01.
Article in English | MEDLINE | ID: covidwho-1281493

ABSTRACT

AIMS: Angiotensin-converting enzyme 2 (ACE2) is a key negative regulator of the renin-angiotensin system and also a major receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Here, we reveal a role for NF-κB in human lung cell expression of ACE2, and we further explore the potential utility of repurposing NF-κB inhibitors to downregulate ACE2. MAIN METHODS: Expression of ACE2 was assessed by Western blotting and RT-qPCR in multiple human lung cell lines with or without NF-κB inhibitor treatment. Surface ACE2 expression and intracellular reactive oxygen species (ROS) levels were measured with flow cytometry. p50 was knocked down with siRNA. Cytotoxicity was monitored by PARP cleavage and MTS assay. KEY FINDINGS: Pyrrolidine dithiocarbamate (PDTC), an NF-κB inhibitor, suppressed endogenous ACE2 mRNA and protein expression in H322M and Calu-3 cells. The ROS level in H322M cells was increased after PDTC treatment, and pretreatment with N-acetyl-cysteine (NAC) reversed PDTC-induced ACE2 suppression. Meanwhile, treatment with hydrogen peroxide augmented ACE2 suppression in H322M cells with p50 knockdown. Two repurposed NF-κB inhibitors, the anthelmintic drug triclabendazole and the antiprotozoal drug emetine, also reduced ACE2 mRNA and protein levels. Moreover, zinc supplementation augmented the suppressive effects of triclabendazole and emetine on ACE2 expression in H322M and Calu-3 cells. SIGNIFICANCE: These results suggest that ACE2 expression is modulated by ROS and NF-κB signaling in human lung cells, and the combination of zinc with triclabendazole or emetine shows promise for clinical treatment of ACE2-related disease.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , Antiparasitic Agents/pharmacology , Down-Regulation/drug effects , Emetine/pharmacology , NF-kappa B/antagonists & inhibitors , Triclabendazole/pharmacology , Zinc/pharmacology , COVID-19/genetics , Cell Line , Drug Repositioning , Humans , Lung/cytology , Lung/drug effects , Lung/metabolism , Pyrrolidines/pharmacology , Thiocarbamates/pharmacology , COVID-19 Drug Treatment
12.
SLAS Discov ; 26(6): 749-756, 2021 07.
Article in English | MEDLINE | ID: covidwho-1136206

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) represents a significant threat to human health. Despite its similarity to related coronaviruses, there are currently no specific treatments for COVID-19 infection, and therefore there is an urgent need to develop therapies for this and future coronavirus outbreaks. Formation of the cap at the 5' end of viral RNA has been shown to help coronaviruses evade host defenses. Nonstructural protein 14 (nsp14) is responsible for N7-methylation of the cap guanosine in coronaviruses. This enzyme is highly conserved among coronaviruses and is a bifunctional protein with both N7-methyltransferase and 3'-5' exonuclease activities that distinguish nsp14 from its human equivalent. Mutational analysis of SARS-CoV nsp14 highlighted its role in viral replication and translation efficiency of the viral genome. In this paper, we describe the characterization and development of a high-throughput assay for nsp14 utilizing RapidFire technology. The assay has been used to screen a library of 1771 Food and Drug Administration (FDA)-approved drugs. From this, we have validated nitazoxanide as a selective inhibitor of the methyltransferase activity of nsp14. Although modestly active, this compound could serve as a starting point for further optimization.


Subject(s)
Antiviral Agents/pharmacology , Exoribonucleases/antagonists & inhibitors , High-Throughput Screening Assays , Nitro Compounds/pharmacology , RNA Caps/antagonists & inhibitors , RNA, Viral/antagonists & inhibitors , SARS-CoV-2/drug effects , Thiazoles/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Antiparasitic Agents/chemistry , Antiparasitic Agents/pharmacology , Antiviral Agents/chemistry , COVID-19/virology , Cloning, Molecular , Drug Repositioning , Enzyme Assays , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Escherichia coli/genetics , Escherichia coli/metabolism , Exoribonucleases/genetics , Exoribonucleases/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Kinetics , Mass Spectrometry/methods , Methylation , Nitro Compounds/chemistry , Prescription Drugs/chemistry , Prescription Drugs/pharmacology , RNA Caps/genetics , RNA Caps/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , SARS-CoV-2/enzymology , SARS-CoV-2/genetics , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Thiazoles/chemistry , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects
13.
Biochem Biophys Res Commun ; 538: 163-172, 2021 01 29.
Article in English | MEDLINE | ID: covidwho-1125081

ABSTRACT

FDA approved for parasitic indications, the small molecule ivermectin has been the focus of growing attention in the last 8 years due to its potential as an antiviral. We first identified ivermectin in a high throughput compound library screen as an agent potently able to inhibit recognition of the nuclear localizing Human Immunodeficiency Virus-1 (HIV-1) integrase protein by the host importin (IMP) α/ß1 heterodimer, and recently demonstrated its ability to bind directly to IMPα to cause conformational changes that prevent its function in nuclear import of key viral as well as host proteins. Cell culture experiments have shown robust antiviral action towards a whole range of viruses, including HIV-1, dengue, Zika and West Nile Virus, Venezuelan equine encephalitis virus, Chikungunya, pseudorabies virus, adenovirus, and SARS-CoV-2 (COVID-19). Close to 70 clinical trials are currently in progress worldwide for SARS-CoV-2. Although few of these studies have been completed, the results that are available, as well as those from observational/retrospective studies, indicate clinical benefit. Here we discuss the case for ivermectin as a host-directed broad-spectrum antiviral agent, including for SARS-CoV-2.


Subject(s)
Antiparasitic Agents/pharmacology , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Ivermectin/pharmacology , SARS-CoV-2/drug effects , Antiparasitic Agents/therapeutic use , Antiviral Agents/therapeutic use , Humans , Ivermectin/therapeutic use , alpha Karyopherins/antagonists & inhibitors
14.
Actas Dermosifiliogr (Engl Ed) ; 112(2): 118-126, 2021 Feb.
Article in English, Spanish | MEDLINE | ID: covidwho-1064694

ABSTRACT

Researchers the world over are working to find the treatments needed to reduce the negative effects of coronavirus disease 2019 (COVID-19) and improve the current prognosis of patients. Several drugs that are often used in dermatology are among the potentially useful treatments: ivermectin, antiandrogenic agents, melatonin, and the antimalarial drugs chloroquine and hydroxychloroquine. These and other agents, some of which have proven controversial, are being scrutinized by the scientific community. We briefly review the aforementioned dermatologic drugs and describe the most recent findings relevant to their use against COVID-19.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Androgen Antagonists/pharmacology , Androgen Antagonists/therapeutic use , Antimalarials/pharmacology , Antimalarials/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antiparasitic Agents/pharmacology , Antiparasitic Agents/therapeutic use , COVID-19/mortality , Chloroquine/pharmacology , Chloroquine/therapeutic use , Cinchona/chemistry , Humans , Hydroxychloroquine/pharmacology , Hydroxychloroquine/therapeutic use , Ivermectin/pharmacology , Ivermectin/therapeutic use , Melatonin/pharmacology , Melatonin/therapeutic use , Virus Internalization/drug effects
15.
J Travel Med ; 28(2)2021 02 23.
Article in English | MEDLINE | ID: covidwho-1043777

ABSTRACT

BACKGROUND: Nearly a year into the COVID-19 pandemic, we still lack effective anti-SARS-CoV-2 drugs with substantial impact on mortality rates except for dexamethasone. As the search for effective antiviral agents continues, we aimed to review data on the potential of repurposing antiparasitic drugs against viruses in general, with an emphasis on coronaviruses. METHODS: We performed a review by screening in vitro and in vivo studies that assessed the antiviral activity of several antiparasitic agents: chloroquine, hydroxychloroquine (HCQ), mefloquine, artemisinins, ivermectin, nitazoxanide (NTZ), niclosamide, atovaquone and albendazole. RESULTS: For HCQ and chloroquine we found ample in vitro evidence of antiviral activity. Cohort studies that assessed the use of HCQ for COVID-19 reported conflicting results, but randomized controlled trials (RCTs) demonstrated no effect on mortality rates and no substantial clinical benefits of HCQ used either for prevention or treatment of COVID-19. We found two clinical studies of artemisinins and two studies of NTZ for treatment of viruses other than COVID-19, all of which showed mixed results. Ivermectin was evaluated in one RCT and few observational studies, demonstrating conflicting results. As the level of evidence of these data is low, the efficacy of ivermectin against COVID-19 remains to be proven. For chloroquine, HCQ, mefloquine, artemisinins, ivermectin, NTZ and niclosamide, we found in vitro studies showing some effects against a wide array of viruses. We found no relevant studies for atovaquone and albendazole. CONCLUSIONS: As the search for an effective drug active against SARS-CoV-2 continues, we argue that pre-clinical research of possible antiviral effects of compounds that could have antiviral activity should be conducted. Clinical studies should be conducted when sufficient in vitro evidence exists, and drugs should be introduced into widespread clinical use only after being rigorously tested in RCTs. Such a search may prove beneficial in this pandemic or in outbreaks yet to come.


Subject(s)
Antiparasitic Agents/pharmacology , COVID-19 Drug Treatment , Drug Repositioning , Hydroxychloroquine/pharmacology , Ivermectin/pharmacology , SARS-CoV-2/drug effects , Animals , Antiparasitic Agents/therapeutic use , COVID-19/epidemiology , Humans , Hydroxychloroquine/therapeutic use , Ivermectin/therapeutic use , Pandemics , Randomized Controlled Trials as Topic
16.
Pharmacol Rep ; 73(3): 736-749, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1002205

ABSTRACT

INTRODUCTION: COVID-19 cases are on surge; however, there is no efficient treatment or vaccine that can be used for its management. Numerous clinical trials are being reviewed for use of different drugs, biologics, and vaccines in COVID-19. A much empirical approach will be to repurpose existing drugs for which pharmacokinetic and safety data are available, because this will facilitate the process of drug development. The article discusses the evidence available for the use of Ivermectin, an anti-parasitic drug with antiviral properties, in COVID-19. METHODS: A rational review of the drugs was carried out utilizing their clinically significant attributes. A more thorough understanding was met by virtual embodiment of the drug structure and realizable viral targets using artificial intelligence (AI)-based and molecular dynamics (MD)-simulation-based study. CONCLUSION: Certain studies have highlighted the significance of ivermectin in COVID-19; however, it requires evidences from more Randomised Controlled Trials (RCTs) and dose- response studies to support its use. In silico-based analysis of ivermectin's molecular interaction specificity using AI and classical mechanics simulation-based methods indicates positive interaction of ivermectin with viral protein targets, which is leading for SARS-CoV 2 N-protein NTD (nucleocapsid protein N-terminal domain).


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Ivermectin/pharmacology , Ivermectin/therapeutic use , Animals , Antiparasitic Agents/pharmacology , Antiparasitic Agents/therapeutic use , Antiviral Agents/pharmacology , Humans , Molecular Dynamics Simulation
17.
Sci Rep ; 10(1): 17073, 2020 10 13.
Article in English | MEDLINE | ID: covidwho-867592

ABSTRACT

Ivermectin is a widely used antiparasitic drug with known efficacy against several single-strain RNA viruses. Recent data shows significant reduction of SARS-CoV-2 replication in vitro by ivermectin concentrations not achievable with safe doses orally. Inhaled therapy has been used with success for other antiparasitics. An ethanol-based ivermectin formulation was administered once to 14 rats using a nebulizer capable of delivering particles with alveolar deposition. Rats were randomly assigned into three target dosing groups, lower dose (80-90 mg/kg), higher dose (110-140 mg/kg) or ethanol vehicle only. A toxicology profile including behavioral and weight monitoring, full blood count, biochemistry, necropsy and histological examination of the lungs was conducted. The pharmacokinetic profile of ivermectin in plasma and lungs was determined in all animals. There were no relevant changes in behavior or body weight. There was a delayed elevation in muscle enzymes compatible with rhabdomyolysis, that was also seen in the control group and has been attributed to the ethanol dose which was up to 11 g/kg in some animals. There were no histological anomalies in the lungs of any rat. Male animals received a higher ivermectin dose adjusted by adipose weight and reached higher plasma concentrations than females in the same dosing group (mean Cmax 86.2 ng/ml vs. 26.2 ng/ml in the lower dose group and 152 ng/ml vs. 51.8 ng/ml in the higher dose group). All subjects had detectable ivermectin concentrations in the lungs at seven days post intervention, up to 524.3 ng/g for high-dose male and 27.3 ng/g for low-dose females. nebulized ivermectin can reach pharmacodynamic concentrations in the lung tissue of rats, additional experiments are required to assess the safety of this formulation in larger animals.


Subject(s)
Antiparasitic Agents/therapeutic use , Coronavirus Infections/drug therapy , Ivermectin/therapeutic use , Pneumonia, Viral/drug therapy , Administration, Inhalation , Animals , Antiparasitic Agents/pharmacokinetics , Antiparasitic Agents/pharmacology , Behavior, Animal/drug effects , COVID-19 , Coronavirus Infections/pathology , Dose-Response Relationship, Drug , Female , Half-Life , Ivermectin/pharmacokinetics , Ivermectin/pharmacology , Lung/metabolism , Lung/pathology , Male , Necrosis , Pandemics , Pneumonia, Viral/pathology , Proof of Concept Study , Rats , Rats, Sprague-Dawley , Respiration Disorders/drug therapy , Respiration Disorders/pathology
18.
An Acad Bras Cienc ; 92(2): e20200466, 2020.
Article in English | MEDLINE | ID: covidwho-608501

ABSTRACT

COVID-19 emerged in December 2019 in China, and since then, has disrupted global public health and changed economic paradigms. In dealing with the new Coronavirus, SARS-CoV-2, the world has not faced such extreme global fragility since the "Spanish flu" pandemic in 1918. Researchers globally are dedicating efforts to the search for an effective treatment for COVID-19. Drugs already used in a clinical setting for other pathologies have been tested as a new therapeutic approach against SARS-CoV-2, setting off a frenzy over the preliminary data of different studies. This work aims to compile and discuss the data published thus far. Despite the potential effects of some antivirals and antiparasitic against COVID-19, clinical studies must confirm real effectiveness. However, non-pharmacological approaches have proven to be the most efficient strategy to date.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Antiparasitic Agents/administration & dosage , Antiviral Agents/administration & dosage , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Macrolides/administration & dosage , Pneumonia, Viral/drug therapy , Serine Proteinase Inhibitors/administration & dosage , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antiparasitic Agents/chemistry , Antiparasitic Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , COVID-19 , Humans , Macrolides/chemistry , Macrolides/pharmacology , Pandemics , SARS-CoV-2 , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL